
2025/06/28 11:58 1/3 Side-by-Side .NET Core Installations

Knowledge Base - https://kbase.devtoprd.com/

Side-by-Side .NET Core Installations

Setup

This describes a setup where .NET Core 3.1 was installed first, then .NET Core 2.2 was installed later.

Since .NET Core 3.1 is the newest version, issuing a command like this:

dotnet new console -o MyConsoleApp

…creates a console application that targets v3.1. If you look at the .csproj file, you’ll see this:

<TargetFramework>netcoreapp3.1</TargetFramework>

Project Level

There are a couple of ways to target v2.2. Different templates support different methods.

For a console app, simply edit the .csproj to reflect the version you want:

<TargetFramework>netcoreapp2.2</TargetFramework>

…and then restore:

dotnet restore

Some templates, like webapi and mvc, allow you to target an alternate version when you create the
project:

dotnet new webapi -f netcoreapp2.2 -o MyWebService

Framework Level

You can also control the default framework used by the CLI. We’ll continue using our example
described above, where .NET Core 3.1 was installed first, then .NET Core 2.2 was installed later.

Since 2.2 was installed last, that makes it the default SDK:

dotnet --version

Result:

2.2.108



Last update: 2025/06/08 07:24 side_by_net_core_installations https://kbase.devtoprd.com/doku.php?id=side_by_net_core_installations

https://kbase.devtoprd.com/ Printed on 2025/06/28 11:58

To change the default SDK version, first list your installed versions, and note the version you want to
use as the default:

dotnet --list-sdks

Result:

2.2.108
3.1.301

(We’ll change our default to 3.1.301)

Create a global.json file. The setting in the global.json file will affect the dotnet cli when it’s invoked in
any subdirectory under the location of the global.json file, so you’ll probably want to create it in a
location like $HOME (for Linux), or C:\ (for Windows):

dotnet new globaljson

Then, edit the new global.json file, and update the “version” value to reflect the version you wish to
be the default:

{
  "sdk": {
    "version": "3.1.301"
  }
}

Then, the version reported by the CLI will match:

dotnet --version

Result:

3.1.301

More Information

How to install multiple versions of .NET Core side by side on ubuntu - Stack Overflow

Side by Side user scoped .NET Core installations on Linux with dotnet-install.sh - Scott Hanselman's
Blog

Switching between .NET Core SDK Versions

dotnet

https://stackoverflow.com/questions/39233865/how-to-install-multiple-versions-of-net-core-side-by-side-on-ubuntu
https://www.hanselman.com/blog/side-by-side-user-scoped-net-core-installations-on-linux-with-dotnetinstallsh
https://www.hanselman.com/blog/side-by-side-user-scoped-net-core-installations-on-linux-with-dotnetinstallsh
https://www.markheath.net/post/switching-between-netcore-sdk-versions
https://kbase.devtoprd.com/doku.php?id=tag:dotnet&do=showtag&tag=dotnet


2025/06/28 11:58 3/3 Side-by-Side .NET Core Installations

Knowledge Base - https://kbase.devtoprd.com/

From:
https://kbase.devtoprd.com/ - Knowledge Base

Permanent link:
https://kbase.devtoprd.com/doku.php?id=side_by_net_core_installations

Last update: 2025/06/08 07:24

https://kbase.devtoprd.com/
https://kbase.devtoprd.com/doku.php?id=side_by_net_core_installations

	Side-by-Side .NET Core Installations
	Setup
	Project Level
	Framework Level
	More Information


