
2025/09/12 04:53 1/6 Programming Arduino (AVR) and Raspberry Pi Pico (ARM) in C

Knowledge Base - https://kbase.devtoprd.com/

Programming Arduino (AVR) and Raspberry
Pi Pico (ARM) in C

This article will document the steps required to blink the onboard LED (the “Hello World” of the
hobbyist microcontroller world) on Arduino UNO and Raspberry Pi Pico boards.

This will use standards-compliant C code in a CLI environment.

Arduino (AVR)

AVR chips are used on Arduino boards. This section assumes that you’re using an Arduino Uno. If
you’re using something else, you’ll need to update the command line arguments for avr-gcc and
avrdude to reflect the chip model.

Requirements

Instructions assume a Debian-based system.

Required packages:

Package
Name Description

binutils
The programs in this package are used to assemble, link and manipulate binary and
object files. They may be used in conjunction with a compiler and various libraries to
build programs.

gcc-avr This is the GNU C compiler for AVR, a fairly portable optimizing compiler which supports
multiple languages. This package includes support for C.

gdb-avr

This package has been compiled to target the avr architecture.

GDB is a source-level debugger, capable of breaking programs at any specific line,
displaying variable values, and determining where errors occurred. Currently, it works
for C, C++, Fortran Modula 2 and Java programs. A must-have for any serious
programmer.

This package is primarily for avr developers and cross-compilers and is not needed by
normal users or developers.

avr-libc Standard library used for the development of C programs for the Atmel AVR micro
controllers. This package contains static libraries as well as the header files needed.

avrdude
AVRDUDE is an open source utility to download/upload/manipulate the ROM and
EEPROM contents of AVR microcontrollers using the in-system programming technique
(ISP)

Installation:

sudo apt install binutils gcc-avr gdb-avr avr-libc avrdude

Last
update:
2025/06/08
07:19

programming_arduino_avr_raspberry_pi_pico_arm https://kbase.devtoprd.com/doku.php?id=programming_arduino_avr_raspberry_pi_pico_arm

https://kbase.devtoprd.com/ Printed on 2025/09/12 04:53

Source

blink.c

#include <avr/io.h> // defines pins and ports
#include <util/delay.h>

#define BLINK_DELAY 500 // number of milliseconds to wait between LED
toggles.

int main(void) {
 DDRB |= (1 << PB5); // Data Direction Register B: writing a 1 to the
Pin B5
 // bit enables output

 // Event loop (runs forever)
 while (1) {
 PORTB = 0b00100000; // turn on 5th LED bit/pin in PORT B (Pin13 in
Arduino)
 _delay_ms(BLINK_DELAY);

 PORTB = 0b00000000; // turn off all bits/pins on PB
 _delay_ms(BLINK_DELAY);
 }

 return (0); // main() requires a return value, but this will never
happen, as
 // the polling loop is infinite.
}

Makefile

FORMATTER = clang-format -i
ROOT_FILE_NAME = blink
SRC_FILE = $(ROOT_FILE_NAME).c
OBJ_FILE = $(ROOT_FILE_NAME).o
EXE_FILE = $(ROOT_FILE_NAME)
HEX_FILE = $(ROOT_FILE_NAME).hex

default:
 @echo 'Targets:'
 @echo ' compile'
 @echo ' link'
 @echo ' hex'
 @echo ' upload'
 @echo ' format'
 @echo ' clean'

https://kbase.devtoprd.com/doku.php?do=export_code&id=programming_arduino_avr_raspberry_pi_pico_arm&codeblock=1
https://kbase.devtoprd.com/doku.php?do=export_code&id=programming_arduino_avr_raspberry_pi_pico_arm&codeblock=2

2025/09/12 04:53 3/6 Programming Arduino (AVR) and Raspberry Pi Pico (ARM) in C

Knowledge Base - https://kbase.devtoprd.com/

$(OBJ_FILE): $(SRC_FILE)
 avr-gcc -Os -DF_CPU=16000000UL -mmcu=atmega328p -c -o $(OBJ_FILE)
$(SRC_FILE)

compile: $(OBJ_FILE)

$(EXE_FILE): $(OBJ_FILE)
 avr-gcc -mmcu=atmega328p $(OBJ_FILE) -o $(EXE_FILE)

link: $(EXE_FILE)

$(HEX_FILE): $(EXE_FILE)
 avr-objcopy -O ihex -R .eeprom $(EXE_FILE) $(HEX_FILE)

hex: $(HEX_FILE)

upload: $(HEX_FILE)
 avrdude -F -V -c arduino -p ATMEGA328P -P /dev/ttyACM0 -b 115200 -U
flash:w:$(HEX_FILE)

format:
 $(FORMATTER) $(SRC_FILE)

clean:
 -rm -f $(OBJ_FILE) $(EXE_FILE) $(HEX_FILE) $(SRC_FILE).orig

Build and Upload

To build the code, and upload to the Arduino, first plug in your Arduino board, and then:

make upload

What’s going on:

avr-gcc produces an object file compatible with the AVR chipset, and then links it into a binary.1.
Only the hex code is used by the chip, so avr-objcopy extracts it.2.
avrdude uploads the hex code to the board.3.

Raspberry Pi Pico (ARM Cortex)

Requirements / Setup

cd ~/

mkdir pico

Last
update:
2025/06/08
07:19

programming_arduino_avr_raspberry_pi_pico_arm https://kbase.devtoprd.com/doku.php?id=programming_arduino_avr_raspberry_pi_pico_arm

https://kbase.devtoprd.com/ Printed on 2025/09/12 04:53

cd pico

Clone the pico-sdk and pico-examples repositories:

git clone -b master https://github.com/raspberrypi/pico-sdk.git

cd pico-sdk

git submodule update --init

cd ..

git clone -b master https://github.com/raspberrypi/pico-examples.git

Install the toolchain:

sudo apt update

sudo apt install cmake gcc-arm-none-eabi libnewlib-arm-none-eabi build-
essential

Build

Create a build directory:

cd pico-examples

mkdir build

cd build

Set the SDK path:

export PICO_SDK_PATH=../../pico-sdk

Prepare the CMAKE build directory:

cmake ..

Build:

cd blink

make -j4

This produces the following outputs:

2025/09/12 04:53 5/6 Programming Arduino (AVR) and Raspberry Pi Pico (ARM) in C

Knowledge Base - https://kbase.devtoprd.com/

blink.elf This is used by the debugger
blink.uf2 This is the file to be uploaded to the RP2040

Load and Run

To load a .uf2 file onto the Pico, the board must be in BOOTSEL mode. To accomplish this:

Hold down the BOOTSEL button on the Pico.1.
Plug the micro USB cable into the Pico.2.
Release the BOOTSEL button.3.

The Pico will mount as a USB mass storage device. To load the binary code we just created, drag and
drop the blink.uf2 file to the mounted drive. The UF2 file will be loaded on the Pico, and the drive will
automatically unmount.

If you want to load an updated UF2 file to the board, you
must go through the same BOOTSEL steps, after first
unplugging the board.

It can be a pain, having to unplug the board and plug it back in (in BOOTSEL mode) every time you
want to apply an update. I recommend purchasing a microUSB cable with a switch. Then, instead of
unplugging and plugging the cable every time, your BOOTSEL steps become:

Switch off the micro USB cable.1.
Hold down the BOOTSEL button on the Pico.2.
Switch on the micro USB cable.3.

Last
update:
2025/06/08
07:19

programming_arduino_avr_raspberry_pi_pico_arm https://kbase.devtoprd.com/doku.php?id=programming_arduino_avr_raspberry_pi_pico_arm

https://kbase.devtoprd.com/ Printed on 2025/09/12 04:53

Release the BOOTSEL button.4.

Make sure you purchase a cable that supports data transfer, not just power. This is the one I’m using,
but any micro USB cable with data support should work.

The Code

blink.c

#include "pico/stdlib.h"

int main() {
#ifndef PICO_DEFAULT_LED_PIN
#warning blink example requires a board with a regular LED
#else
 const uint LED_PIN = PICO_DEFAULT_LED_PIN; // Default PIN number
for the built-in LED

 gpio_init(LED_PIN); // Initialize the LED

 gpio_set_dir(LED_PIN, GPIO_OUT);

 // Never-ending polling loop
 while (true) {
 // Turn on the LED, then wait 1/2 second
 gpio_put(LED_PIN, 1);
 sleep_ms(500);

 // Turn off the LED, then wait 1/2 second
 gpio_put(LED_PIN, 0);
 sleep_ms(500);
 }
#endif
}

c and cpp, embedded and iot

From:
https://kbase.devtoprd.com/ - Knowledge Base

Permanent link:
https://kbase.devtoprd.com/doku.php?id=programming_arduino_avr_raspberry_pi_pico_arm

Last update: 2025/06/08 07:19

https://www.amazon.com/gp/product/B07T9BRNHW
https://kbase.devtoprd.com/doku.php?do=export_code&id=programming_arduino_avr_raspberry_pi_pico_arm&codeblock=11
https://kbase.devtoprd.com/doku.php?id=tag:c_and_cpp&do=showtag&tag=c_and_cpp
https://kbase.devtoprd.com/doku.php?id=tag:embedded_and_iot&do=showtag&tag=embedded_and_iot
https://kbase.devtoprd.com/
https://kbase.devtoprd.com/doku.php?id=programming_arduino_avr_raspberry_pi_pico_arm

	Programming Arduino (AVR) and Raspberry Pi Pico (ARM) in C
	Arduino (AVR)
	Requirements
	Source
	Build and Upload

	Raspberry Pi Pico (ARM Cortex)
	Requirements / Setup
	Build
	Load and Run
	The Code

