
2025/06/28 11:14 1/9 Arduino / Raspberry Pi Remote Sensor

Knowledge Base - https://kbase.devtoprd.com/

Arduino / Raspberry Pi Remote Sensor

This project will provide an introduction to the concept of the “Internet_of_Things”.

Technopedia defines Internet of Things as:

…a computing concept that describes a future where
everyday physical objects will be connected to the Internet
and be able to identify themselves to other devices. The
term is closely identified with RFID as the method of
communication, although it also may include other sensor
technologies, wireless technologies or QR codes.

The IoT is significant because an object that can represent
itself digitally becomes something greater than the object by
itself. No longer does the object relate just to you, but is now
connected to surrounding objects and database data. When
many objects act in unison, they are known as having
“ambient intelligence.”

Specifically, we will program a device to provide temperature data, and then make that data publicly
available on the web.

(If you’d like to save some time typing in scripts, you can download them here.)

Architecture

Our component architecture will be as follows:

The physical layer will be used to capture the temperature data. We will implement this using
an Arduino Uno board and a temperature sensor.
The coordination layer will be used to capture the temperature measurements from the physical
layer and for sending the measurements to our application. This will be implemented using
Node.js running on a Raspberry Pi. We will also use the Raspberry Pi as a development platform
for the Arduino.
The application layer will be used to visualize the measurements in real-time. This will be
implemented using a data visualization cloud service called Plotly.

This guide assumes that you already have your Raspberry Pi
up and running.

http://www.techopedia.com/
https://github.com/jfcarr-hardware/arduino-raspberry-pi-remote-sensor

Last update:
2025/06/08 07:00 arduino_raspberry_pi_remote_sensor https://kbase.devtoprd.com/doku.php?id=arduino_raspberry_pi_remote_sensor

https://kbase.devtoprd.com/ Printed on 2025/06/28 11:14

Required Hardware

Raspberry Pi If you tweak the instructions a bit, it’s not difficult to use a desktop PC or laptop
instead of a Raspberry Pi. (Probably easier, in fact.) I’m using a Raspberry Pi – B+, not a
Raspberry 2. You can probably use a different model, I just haven’t tried it.
Arduino with USB cable. I’m using an Arduino Uno. As with the Raspberry Pi, you can probably
use a different model.
breadboard
TMP36 temperature sensor Similar sensors don’t necessarily report the same temperature data,
so keep that in mind if you make a substitution here. For example, the TMP36 reports data in
Celsius, whereas the TMP35 reports in Kelvin.
jumper wires (5)

Arduino Configuration

Wire up the Arduino as follows:

(I created this breadboard layout image in Fritzing.)

It’s a very simple setup. We provide power to the temperature sensor, and the sensor returns
temperature data via digital pin 0.

Arduino IDE

To write code and upload it to the Arduino board, you’ll need the free Arduino IDE.

https://www.sparkfun.com/products/12994
https://www.sparkfun.com/products/11021
https://www.sparkfun.com/products/12002
https://www.sparkfun.com/products/10988
https://www.sparkfun.com/products/11710
http://fritzing.org/

2025/06/28 11:14 3/9 Arduino / Raspberry Pi Remote Sensor

Knowledge Base - https://kbase.devtoprd.com/

Versions are available for Windows, Mac, and Linux. Since we’re running it on the Raspberry Pi, we’ll
be using the Linux version.

1) If you want the latest version, download and install it from here.

2) If using the latest version isn’t important to you (it isn’t required), you can install it from a terminal
prompt using apt-get:

sudo apt-get install arduino

The Arduino IDE does have a few dependencies, and required about 80MB on my Raspberry Pi.

After you install the IDE, plug in the Arduino using the supplied USB cable, then run the IDE.

Open the “Tools” menu, go to the “Board” section and make sure your Arduino model is1.
selected.
In the “Serial Port” section, make sure the serial port value is selected. Also, note the value of2.
the serial port string. You’ll need it later. (It will look something like this: “/dev/ttyACM0”)

Processing source

Code for the Arduino is written in Processing. Processing is syntactically very similar to the C, C++,
and Java languages. A code module for the Arduino is called a “sketch”.

This is the code we’ll use to get data from the temperature sensor. Type this code into the sketch
editor in the Arduino IDE:

templog.ino

https://www.arduino.cc/en/Main/Software
https://en.wikipedia.org/wiki/Processing_%28programming_language%29
https://kbase.devtoprd.com/doku.php?do=export_code&id=arduino_raspberry_pi_remote_sensor&codeblock=1

Last update:
2025/06/08 07:00 arduino_raspberry_pi_remote_sensor https://kbase.devtoprd.com/doku.php?id=arduino_raspberry_pi_remote_sensor

https://kbase.devtoprd.com/ Printed on 2025/06/28 11:14

/* This is the pin getting the stream of temperature data. */
#define sensorPin 0

float Celsius, Fahrenheit;
int sensorValue;

void setup() {
 Serial.begin(9600); /* Initialize the Serial communications */
}

void loop() {

 GetTemp();

 Serial.println(Fahrenheit); /* You can easily change this to print
Celsius if you want. */

 delay(2000); /* Wait 2 seconds before getting the temperature
again. */
}

void GetTemp() {
 sensorValue = analogRead(sensorPin); /* Get the current
temperature from the sensor. */

 /*
 * The data from the sensor is in mV (millivolts), where 10mV = 1
degree Celsius.
 * So if, for example, you receive a value of 220 from the sensor,
this indicates
 * a temperature of 22 degrees Celsius.
 */

 Celsius = sensorValue / 10; /* Convert the sensor value to
Celsius */
 Fahrenheit = (Celsius * 1.8) + 32; /* Convert the Celsius value to
Fahrenheit */
}

After you’ve typed in this source code, click the “Verify” button in the toolbar to check the syntax. If
you’ve made any mistakes, correct them before continuing.

Once the code is verified, click the “Upload” button in the toolbar to write it to the Arduino’s flash
memory.

Running with serial monitor

2025/06/28 11:14 5/9 Arduino / Raspberry Pi Remote Sensor

Knowledge Base - https://kbase.devtoprd.com/

Once the sketch has been written to the Arduino, it will start running automatically. You can check the
values being received from the temperature sensor by opening the serial monitor in the Arduino IDE.
To do that, click the “Serial Monitor” button on the right side of the toolbar. A console window will
open up, and you should see a stream of data similar to this:

86.0
86.0
86.2
86.2
86.0
85.8
85.8
85.8

You may see values lower or higher than this. (The sensor on
my Arduino seems to run a little hot.)

Now that we have the Arduino supplying temperature data, the next step is to make it available on
the web.

Plotly account

Plotly is an online analytics and data visualization tool. It provides online graphing, analytics, and
stats tools for individuals and collaboration, as well as scientific graphing libraries for Python, R,
MATLAB, Perl, Julia, Arduino, and REST.

It also has a streaming API, which we’ll use to get our data to the web.

To set up a free Plotly account, go to the Plotly home page here. After you create your account, there
are three pieces of information you’ll need to remember. We’ll be using them later:

Username
API key
Streaming API token

Node.js

To get our data from the Arduino to Plotly, we’ll use Node.js.

Node.js is an open source, cross-platform runtime
environment for server-side and networking applications.
Node.js applications are written in JavaScript and can be run
within the Node.js runtime on OS X, Microsoft Windows,
Linux, and a handful of other operating systems.

https://plot.ly/

Last update:
2025/06/08 07:00 arduino_raspberry_pi_remote_sensor https://kbase.devtoprd.com/doku.php?id=arduino_raspberry_pi_remote_sensor

https://kbase.devtoprd.com/ Printed on 2025/06/28 11:14

First, make sure your system is up-to-date. Open a terminal and issue the following command:

sudo apt-get update

sudo apt-get upgrade -y

(Probably a good idea to reboot after this.)

Then, download and install node.js:

For the wget step, the latest as of this writing seems to be http://nodejs.org/dist/v0.11.9/, but I was
not able to get this version to work. I used http://nodejs.org/dist/v0.10.16/.

wget http://nodejs.org/dist/v0.10.16/node-v0.10.16-linux-arm-pi.tar.gz

tar xvfz node-v0.10.16-linux-arm-pi.tar.gz

sudo mv node-v0.10.16-linux-arm-pi /opt/node/

You need to retrieve the version from nodejs.org. The version
in the repository does not work, so you can’t use apt-get to
install it.

Configure your path:

echo 'export PATH="$PATH:/opt/node/bin"' >> ~/.bashrc

source ~/.bashrc

Node.js project setup

Open a terminal, and create a directory for your Node.js project. Change your working directory to the
new directory. Example:

mkdir temp_nodejs

cd temp_nodejs

We’ll need a couple of additional libraries for our Node.js project, serialport and plotly. Install them
using the following commands in your project folder:

npm install serialport

npm install plotly

http://nodejs.org/dist/v0.11.9/
http://nodejs.org/dist/v0.10.16/

2025/06/28 11:14 7/9 Arduino / Raspberry Pi Remote Sensor

Knowledge Base - https://kbase.devtoprd.com/

 If you get a “failed to fetch from registry” error when you try to use npm install, you may need
to make the following change on your Raspberry Pi:

npm config set registry http://registry.npmjs.org/

(By default, npm install uses https://registry.npmjs.org/)

Now we’re ready to create the Javascript file for Node.js to execute. Use the following as a template:

server.js

var serialport = require('serialport'),
 plotly = require('plotly')('Plotly_UserName', 'Plotly_API'),
 token = 'Plotly_Token';
var portName = '/dev/tty.usbmodem1411';
var sp = new serialport.SerialPort(portName, {
 baudRate: 9600,
 dataBits: 8,
 parity: 'none',
 stopBits: 1,
 flowControl: false,
 parser: serialport.parsers.readline("\r\n")
});

// helper function to get a nicely formatted date string
function getDateString() {
 var time = new Date().getTime();
 // 32400000 is (GMT+9 Japan)
 // for your timezone just multiply +/-GMT by 36000000
 var datestr = new Date(time + 32400000).toISOString().replace(/T/,
' ').replace(/Z/, '');
 return datestr;
}

var initdata = [{x: [], y: [], stream: {token: token, maxpoints:
500}}];
var initlayout = {fileopt: "extend", filename: "ambient-fahrenheit-
temperature-sensor"};

plotly.plot(initdata, initlayout, function (err, msg) {
 if (err)
 return console.log(err)

 console.log(msg);
 var stream = plotly.stream(token, function (err, res) {
 console.log(err, res);
 });

 sp.on('data', function (input) {
 if (isNaN(input) || input > 1023)

https://registry.npmjs.org/
https://kbase.devtoprd.com/doku.php?do=export_code&id=arduino_raspberry_pi_remote_sensor&codeblock=9

Last update:
2025/06/08 07:00 arduino_raspberry_pi_remote_sensor https://kbase.devtoprd.com/doku.php?id=arduino_raspberry_pi_remote_sensor

https://kbase.devtoprd.com/ Printed on 2025/06/28 11:14

 return;

 var streamObject = JSON.stringify({x: getDateString(), y:
input});
 console.log(streamObject);
 stream.write(streamObject + '\n');
 });
});

Make sure you change the portName value to match the
serial port value from our “Arduino IDE” step. Also, change
the Plotly_UserName, Plotly_API, and Plotly_Token text
to match the values from the Plotly account you opened.

Node Server

Make sure your Arduino board is plugged in, then start your Node.js server by issuing the following
command:

node server.js

You should see information similar to the following:

{ streamstatus: 'All Streams Go!',
 url: 'https://plot.ly/~username/44',
 message: '',
 warning: '',
 filename: 'ambient-fahrenheit-temperature-sensor',
 error: '' }
{"x":"2015-08-16 08:55:57.418","y":"87.80"}
{"x":"2015-08-16 08:55:59.417","y":"86.00"}
{"x":"2015-08-16 08:56:01.415","y":"86.00"}
{"x":"2015-08-16 08:56:03.414","y":"86.00"}
{"x":"2015-08-16 08:56:05.413","y":"86.00"}

This indicates that the Node.js server is receiving data from the Arduino board and sending it to Plotly.
The server will continue to log data until you press [Ctrl-C] to stop it.

Plotly View

While the Node.js server is running, open a web browser and log in to your Plotly account. Click the
“Organize” link at the top of the screen, then click the “Open Plot” button on the “ambient-fahrenheit-

2025/06/28 11:14 9/9 Arduino / Raspberry Pi Remote Sensor

Knowledge Base - https://kbase.devtoprd.com/

temperature-sensor” project.

After the project opens, you should see a graph similar to this, updating in real-time:

Plotly projects are public by default, so you are now sharing your real-time temperature data with the
world!

If you’re wondering about that high first value, I’ve noticed
that the first one or two values tend to be anomalous. This
may be related to the sketch being initialized, the initial
board reset, or something else.

Summary

Using some inexpensive, low-powered hardware, we were able to provide some (somewhat) useful
information on the web for public consumption.

Hopefully this will inspire you to create some IoT projects of your own. Good luck!

From:
https://kbase.devtoprd.com/ - Knowledge Base

Permanent link:
https://kbase.devtoprd.com/doku.php?id=arduino_raspberry_pi_remote_sensor

Last update: 2025/06/08 07:00

https://kbase.devtoprd.com/
https://kbase.devtoprd.com/doku.php?id=arduino_raspberry_pi_remote_sensor

	Arduino / Raspberry Pi Remote Sensor
	Architecture
	Required Hardware
	Arduino Configuration
	Arduino IDE
	Processing source
	Running with serial monitor
	Plotly account
	Node.js
	Node.js project setup
	Node Server
	Plotly View
	Summary

